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Notations 
Abbreviations: 
GR graph representation. 
RGR resistance graph representation. 
p.d. potential difference. 
 
Symbols: 
A member cross-section area. 
B circuit matrix. 
CF controlled-flow edge. 
CP controlled-potential difference edge. 
d member local deformation vector. 
E edge group. 
E member modulus of elasticity. 
f member local force vector. 
F,F flow/flow vector when related to a graph edge. 
F,F force/force vector when related to a structural joint.  
Ft h flow in edge with tail vertex t and head vertex h. 
G graph. 
H hybrid relation matrix. 
I member cross section moment of inertia. 
I unity matrix. 
K member local stiffness matrix. 
KR conductance of a resistance edge. 
L member length component. 
L member length vector. 
P external force component or flow source edge. 
P external force vector. 
P flow source edge set. 
Q cutset matrix. 
R member local flexibility matrix. 
R resistance edge. 
RR resistance of a resistance edge. 
T orthogonal transformation operator. 
∆ component of potential-difference or potential difference source edge. 
∆ potential-difference vector. 
π potential vector. 
Π  matrix-vector of potentials 
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Superscripts: 
A angular. 
CF controlled-flow edge. 
CP controlled-potential difference edge. 
F flow aspect. 
F flow edge group. 
L linear. 
P flow source edge. 
R resistance edge. 
t matrix transpose operator. 
∆ potential aspect or potential source edge. 
 
Subscripts: 
h head joint or vertex. 
t tail joint or vertex. 
x,y,z primal space directions. 
φ,θ,ψ  Eulerian angles. 
 
Matrix and Vector notations: 
- Matrices and vectors of variables are designated with bold letters. 
- Variables constituting vectors in space are designated with upper arrows.  
- Vectors or matrices comprising variables constituting vectors in space are designated 

with bold letters and upper arrows.  
 

Abstract 

The paper introduces an approach, according to which skeletal structures are represented by a  
discrete mathematical model called graph representation.  The paper shows that the reasoning upon 
the structure can be performed solely upon the representation, which besides the theoretical value, 
presents a powerful educational tool.   

The paper shows that the students can learn skeletal structures entirely through the graph 
representations and to derive advanced structural topics, including the conjugate theorem and the 
unit force method  from the theorems and principles of network graph theory.  

The graph representations used in the paper for structures have been also applied to represent other 
engineering systems from different engineering disciplines. This enables  to provide the students 
with a multidisciplinary perspective on analysis of engineering systems in general and skeletal 
structures in particular.  

 

1. Introduction 

The work reported in the paper is a part of a research approach, in which general discrete 
mathematical representations, called graph representations (GR), are being developed and then 
associated with a wide scope of engineering systems. Doing so leads to ability to substitute the 
reasoning over the engineering system by a more mathematically established reasoning over the 
graph representation. Accordingly, the results reported in the paper are not limited only to 
structural mechanics, but can be applied to other engineering disciplines that can be represented by 
the same representations.  A GR isomorphic to an engineering system is capable of replacing the 
system in the analysis procedures and other forms of engineering reasoning. Due to the 
mathematical nature of the GR, using them instead of the original system would facilitate the 
computerizing and the systemizing of all the processes needed to be performed upon the system 
(Shai, 2001b). The generality of the work enables treating a variety of disciplines using a unified 
system of representations.  
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Current paper refers by term ‘graph representation’ to the  graphs, which in addition to the basic 
graph-theory theorems and properties, possess special mathematical knowledge. Different 
knowledge content yields different types of graph representations. During years of research, a 
number of types of graph representations have been distinguished (Shai, 2003) and their 
correspondence to various engineering domains has been proved. Furthermore, it was found that 
some types of graph representations are interrelated through strong mathematical connections (Shai 
2001a, Shai 2002), as depicted in the three-dimensional diagram shown in Fig. 1. The diagram 
comprises graph representations (designated by cubes to emphasize the existence of the embedded 
knowledge), engineering domains and all the possible interrelations. Since the graph 
representations constitute a more abstract mathematical level, in the diagram they appear above the 
level of graph representations. Also, some representations were shown to be more general  than the 
others, thus in the diagram they appear at different heights.   
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Figure 1. Hierarchic map of graph representations and engineering systems 

Once an engineering system is represented by a graph representation, all the reasoning upon 
the system can be substituted by the reasoning over the graph representation. Since different 
engineering systems are treated in the same systematic way, the approach can significantly 
facilitate multidisciplinary research. So far, the approach has yielded a number of practical and 
theoretical applications that were described in previous publications, as follows: analysis of 
integrated engineering systems (Shai and Rubin, 2003), systematic design of engineering systems 
(Shai, 2003), finding relations between different engineering fields (Shai, 2001a; Shai, 2002), 
establishing new ways of collaboration  between engineers from different fields (Shai 2003), 
deriving known and new theorems and methods in different engineering domains (Shai, 2003), 
establishing relations between different known methods in engineering (Shai, 2001b) and checking 
validity of engineering systems (Shai and Preiss, 1999). 

Thick lines in Fig. 1 highlight the new relations that are employed in the current paper. Adding the 
beams and the frames to the group of engineering domains, to which graph representations are 
applicable, opens an avenue for new applications.  

It can be seen from the figure that the graph representation chosen for beams and the frames is the 
Resistance Graph Representation (RGR). Actually, the same method that was applied for 
representing and analyzing integrated systems (Shai and Rubin, 2003) has been applied here to 
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frames and beams giving rise to the possibility of perceiving structural view within integrated 
systems consisting of control elements. Due to the research described here, beam and frame 
elements can also be embedded in such systems. This issue is especially important for systems 
belonging to MEMS, where the usage of beam and frame elements is quite frequent, due to 
limitations of the production process. Example of such a system and its graph representation is 
shown in Fig 2. 
  

                                          (a)                                                                     (b) 

Figure 2. Microresonator and its graph representation. 

The common treatment of skeletal structures in the last 50 years was based mainly on algebraic 
topology, first formulated by Langefors (1961), on the basis of structural matrix formulation 
(Southwell, 1940) and Roth’s Diagram (Roth, 1955). This simple formulation of the structural 
knowledge was adopted and evolved by Spillers (1963), Wang and Bjørke (1991) and Kaveh, 
(1995) where the latter was the first to use matroid theory in structures. Nevertheless, this algebraic 
topology, although efficient for analysis of common structures, cannot be regarded as a network 
model, since it employs the structural framework incidence matrix, and such "Incidence Matrices 
have nothing whatever to do with Kirchhoff's Laws" (Kron, 1963). That is why Kron used his 
experience and knowledge in electricity to represent structures by electric circuits. Although 
satisfying Kirchhoff's Laws, these cumbersome 'mechanical' circuits were too complicated for 
analysis purpose. Fenves and Branin (1963) tried to apply network characteristics to Langefors’ 
Algebraic Topology, and distinguished the part of this topology that obeys the two fundamental 
network laws from the part that does not, but kept on using this topology as is, and even 
implemented this method in a computer program called STRESS (Fenves et al., 1964), later 
evolved to STRUDL.  
As graph representations enable one to achieve a new insight into different disciplines, this idea 
was applied to the development of a new teaching method by which students are first taught the 
graph representations, and only then do they learn the engineering material. Due to this new way of 
teaching, students have learned the engineering material from a new multidisciplinary perspective. 
Until now, more than 250 students have already participated in this course (Shai, 2001b). The work 
reported in this paper is one of the outcomes of this project. 

2. Representing structural skeletal member by a graph 

Current section is dedicated to the development of an isomorphic representation of a linear, 
conservative, elastic skeletal member, under the assumption of small angular displacements 
(McGuire and Gallagher, 1979). The representation, which will be referred as the Resistance Graph 
Representation – RGR (Shai, 2003), constitutes a directed graph (Swamy and Thurasiraman, 1982) 
augmented by additional mathematical properties that will be explained in detail in the course of 
the paper. The paper distinguishes between two aspects of the representation – the so-called ‘flow’ 
representation and the ‘potential’ representation (Shai, 2001a; Shai, 2003). The flow graph 
representation is focused on the equations underlying the behavior of forces and the moments in the 
structure and the potential representation is focused on the equations underlying the  behavior of 
deformations in the structure.  
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2.1. Representing the static behavior of a skeletal member through flows. 

Each edge in the graph representation is associated to a vector variable called ‘flow’ (Shai, 2003). 
The flows of the graph  satisfy the ‘flow law’, stating that the sum of flows in each vertex (or 
cutset) is equal to zero. In the paper, the flows are seen as comprised from two components: ‘linear 
flow’ oriented in the plane of the represented structure and ‘angular flow’ oriented perpendicularly 
to that plane. 

Consider a spatial skeletal member shown in Fig. 3a. Its length and direction define a vector L, and 
its end joints are denoted by t (tail) and h (head). The members considered here are acted upon by 
forces and moments exclusively at their end joints, therefore, when representing a structure by a 
graph we shall correspond a member and its end joints by two vertices, t and h, that are connected 
by a directed edge, called 'the member edge', as shown in Fig. 3b. 

The member is subjected to two types of loads – a linearly-directed force, LF , and a moment, AF, 
also termed as angular force. The linear forces applied to the tail and head joints are in static 
equilibrium, thus: 

 ht FF LL −=  (1) 

In accordance with (1), it can be defined  that the linear force acting on the tail joint, LFt , 
corresponds to a linear flow associated with the corresponding member edge, as is depicted in Fig 
3b. By (1), this flow corresponds also to the force applied by the head joint of the member to the 
beam elements it is interfaced with. The linear flow through the member edge is therefore defined 
as follows: 

 htht FFF LLL −==→  (2) 

The moment or angular force, AF , cannot be represented in the same way, since the angular force 
applied to the tail joint is not equal to that applied to the head joint, as can be seen from the 
equilibrium of moments: 

 hht FLFF LAA ×−−=  (3) 

The first component in the right hand side of Eq. (3) can be treated in the same way as the linear 
forces, by defining an angular component of a flow through the member edge that corresponds to 
the moment applied by the member to its head joint: 

 hht FF AA −=→  (4) 

The additional cross-product of the length vector, L, by the linear force, LFh , of Eq. (3) equilibrates 
a part of the angular tail force, without affecting the head joint. Therefore, this issue can be 
represented in the graph by a flow from the tail vertex through another edge, called ‘auxiliary 
edge’, into a common reference vertex, denoted by o, that represents the ground, as shown in Fig. 
3c. The flow law for the vertex t will then satisfy the condition stated in (3). 

The angular flow in the auxiliary edge is dependent on the linear component of the flow through 
the member edge, thus constitutes a Flow-Controlled Flow Source. The variables corresponding to 
this edge will be denoted by the superscript CF (Controlled Flow), as shown in Fig. 3c. The angular 
flow through the auxiliary edge is given by: 

 hth →×=×−= FLFLF LLCFA  (5) 

or, for three dimensional case in Cartesian coordinates: 
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whereas the linear flow through that edge is defined to be zero. The matrix LAHF of Eq. (6) is the 
matrix characterizing the hybrid relation between the flows in the two edges. It should be noted that 
the transformation is performed between the linear flow in one edge to the angular flow in the 
other. 
 

Figure 3. Forces in a structural skeletal member and their flow representation in a graph 
(a) The skeletal member. (b) The linear flows in the member. (c) The angular flows of the member. (d) A complete flow 

representation of the member forces. 

Figure 3d presents the resultant representation of the static aspects of a structural member. This 
representation comprises two edges - the member edge and the auxiliary dependent flow source.  

For algebraic convenience, the two components of flow in the graph edges, although being of 
different types and units, can be written as a single multicommodity flow vector: 
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Accordingly, (2) and (4) can be combined to give the total interpretation of the flow in the member 
edge: 

 hht FF −=→  (8) 

while (6) can be rewritten for the auxiliary edge: 

 ht→⋅= FHF FCF  (9) 

with the hybrid matrix HF given by: 
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2.2. Representing kinematic behavior of the skeletal member through potentials.  

Each vertex in the representation is associated a vector variable, π, called ‘potential’. Furthermore, 
each graph edge is assigned a vector called potential difference that is defined as a difference 
between the tail potential and the head potential of the edge: 

 htht ππ∆ −=→   (11) 

Each joint in the structure may be displaced from its original position due to a change of the state 
of self-stress, and/or externally applied loads. Like the forces, the displacements in a structure 
include both linear and angular components, constituting a linear displacement of the member and 
its acquired slope at some point. In the graph, this displacement is represented by a potential, π, 
associated with the corresponding graph vertex. Thus, the potentials and the potential differences of 
the graph are also composed of linear and angular components. 

The linear and angular potential differences across the member edge, given by (11), represent the 
linear and angular relative displacements between the end joints of the corresponding member. The 
linear relative displacement is contributed by two effects, depicted in Fig. 4a. The first effect is a 
rigid body rotation of the member, whose contribution to the linear relative displacement depends 
on the degree of the angular displacement represented by the angular potential of the tail vertex. 
This dependence effect can be implemented in the graph as a Potential Controlled Potential 
difference Source, whose variables are designated by superscript CP (Controlled Potential). The 
expression for this potential difference, L∆CP , will be developed later in this section. 

The second linear effect is the elastic deformation of the member, whose contribution to the linear 
relative displacement is linearly dependent on both the linear and angular internal forces of the 
member. Such relation is represented by a linear relation between potential difference and flow, 
referred to, in this type of graph representation, as the resistance of the corresponding edge (Shai 
2001b). Therefore, the linear relative displacement caused by deformation will be referred to in its 
graph representation as a resistance linear potential difference, and will be denoted by L∆R . 

The linear potential difference across the member edge is therefore: 

 RLCPLL ∆∆∆ +=→ht  (12) 

Unlike the linear relative displacement, the angular relative displacement, i.e. the difference 
between the angular displacements of the member end joints, is strictly the angular deformation 
(Fig. 4b), referred to in its graph representation as the resistance angular potential difference, A∆R. 
Since only small angles are considered, the commutative property is valid when represented as 
vectors (Goldstein, 1950), hence the vector of angular potential difference can be given by: 

 RAAAA ∆ππ∆ =−=→ htht  (13) 
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Figure 4. Linear and angular displacements in a structural member 
(a) Linear displacements. (b) Angular displacements. 

The expressions (12) and (13) can be generalized into a single potential difference vector 
presentation, as follows: 
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Since the potential difference of the member edge is composed of two different types, as is seen in 
(14), the member edge is to be replaced by a couple of serial edges: a dependent potential source – 
CP, and a resistance edge – R.  

In order to represent the integrated static-kinematic behavior of a structural member, we shall 
combine the graph properties obtained till now into a unified representation. The resulted graph, 
shown in Fig. 5, represents both flows and potential differences, and can therefore be referred to as 
the resistance representation of the structural member (Shai, 2003). The term 'member edge' will 
now refer to both CP and R edges as a pair. Due to their serial connection, the flow through the 
member edge, Ft→h , is equal in both of its components, CP and R edges, i.e.  

 ht→== FFF RCP  (15) 
 

Figure 5. The Resistance element graph corresponding to a structural member 
  

The explicit expressions for ∆CP and ∆R are now to be developed, starting with ∆R, the resistance 
potential difference representing the elastic deformation effect. 
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The deformation of a member, ∆R, is accumulated through the effect of the internal forces in each 
section along the member. However, it is well-known that since internal forces along the member 
can be determined by the force at the head vertex (FR) alone, the deformation can directly be 
related to this force. 

The relation between force and deformation is independent on the coordinate system, but most 
conveniently it can be formulated through the local coordinate system of the member. Several ways 
to select this local system were introduced in the literature (Fleming, 1989), many of them 
(Spillers, 1963; Fuchs, 1992) decompose global vectors into essentially different local components, 
and even use both tail and head components simultaneously. In order to maintain the nature of 
vectors through the transformation, the way of McGuire and Gallagher (1975) is adopted in this 
paper, according to which the local system is merely a global-like system, whose axes are oriented 
along the primal directions of the member, as is formulated in (16):    

  

 RRR FR∆ ⋅= ;     RRR ∆KF ⋅=  (16) 

where RR
  and ( ) 1RR −

= RK  are respectively the resistance and conductance matrices of the 
member edges, which can be obtained by similarity transformation of the local flexibility/stiffness 
matrices:  
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Where T is the orthogonal operator relating between the local and the global coordinate systems.  

 

As for the dependent potential source, ∆CP ,  the potential difference is given, as can be seen in Fig. 
4a, by: 

 tπL∆∆ ACPLCP ×==  (18) 

The potential difference in the dependent flow source edge, CF, is equal to the potential in the tail 
vertex, thus it can replace Aπt: 

 CFA
t

A ∆π =  (19) 

therefore (18) becomes: 

 CFACPL ∆L∆ ×=  (20) 

Eq. (20) can be rewritten as a matrix multiplication: 

 CFA∆ALCPL ∆H∆ ⋅=  (21) 

where, similarly to (6): 
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and so (21) can be generalized to give: 

 CF∆CP ∆H∆ ⋅=  (23) 

Where the potential difference vectors and the hybrid potential difference relation matrix, H∆, are 
given by: 
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One can notice that the hybrid matrices ∆H and FH  are related to each other as follows: 

 ( )tF∆ HH −=  (25) 

After partitioning the member edge, (9) can be restated as follows: 

 CPFCF FHF ⋅=  (26) 

According to (26) and (23), the flow in CF is controlled by the flow in CP, while the potential 
difference in CP is controlled by the potential difference in CF. Consequently, the member can now 
be represented by a more inclusive resistance element graph, shown in Fig. 6, where i stands for the 
index of the represented member of the structure. The graph is accompanied by its interrelations 
(16), (23) and (26). 
 

Figure 6. The resistance element graph corresponding to a skeletal member and its inner 
interrelations 

 

Once the graph representation is established, all the topological rules which have been developed 
for this type of graph become available (Shai, 2003). One of such rules is the generality rule of the 
edge direction, stating that any edge direction can be reversed without loss of consistency, if the 
sign of the associated flow and potential difference vectors is reversed, too. It should be noted, 
though, that even when edge direction is reverted, the vector L associated with each member edge 
remains unchanged for it is determined by the direction originating at the tail vertex, which is 
always the vertex connected with the auxiliary edge. Therefore, the matrices KR and RR are 
invariant in relation to edge directions. As for H∆ and HF, sign inversion should be applied to both 
whenever the direction is reversed in either CF or CP edges in order for the relations (23) and (26) 
to remain valid. 

The graph appearing in Fig. 6 reflects both static and kinematical properties of the beam element. 
In the proposed educational technique it is suggested that the students are first taught this graph 
with all its mathematical properties and embedded methods. Only then are they taught that the 
graph can be interpreted as an isomorphic representation of a skeletal structure. It should be noted 
that the same graph can be interpreted as additional types of engineering systems (Shai 2003), thus 
once the graph-theoretical mathematical basis has been taught, the students can be exposed to a 
wide variety of engineering disciplines and gaining a multidisciplinary perspective.  
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2.3. Graph representation of a general skeletal structure. 

A framework structure can be represented using a resistance graph by dividing the structure into 
primitive members, representing each member by an element graph and interconnecting these 
element graphs into a single graph in a certain topological manner. For example, consider the beam 
of Fig. 7a. The structure possesses three joints: 'A' and 'C' as joints of support, and 'B' as a joint 
upon which the external force is applied. Accordingly, two members are identified in the beam, as 
is depicted in the figure. Directions are assigned to the members as shown, and the graph 
representation of each of the members is constructed according to section 2. Joint B is a joint 
common to both of the members, thus the two member graphs are interconnected so that vertex B is 
their common vertex. Obviously, the reference vertex is also common to both members' element 
graphs. 

Supports are represented as sources of zero potential in those dimensions where the motion is not 
possible. In the unconstrained dimensions, such as the angular z-dimension of the support at C, the 
joint has no connection to ground, therefore the flow from the corresponding vertex to the reference 
vertex in these dimensions is zero, and it is referred to as a resistance edge with a zero conductance. 
The external force is represented as a flow source edge between the reference vertex and the vertex 
corresponding to the joint B, directed from the reference vertex to the vertex B. 

The obtained graph is a resistance graph representation of the structure. Its variables should satisfy 
the flow law, potential law and the member equations. These represent all the physical laws ruling 
the behavior of the structure, thus analysis of the graph behavior can totally replace the analysis of 
the structure, namely, the graph is isomorphic to the structure.  

The graph is basically constructed, as shown in Fig. 7b, but,  for the  sake of convenience, an 
additional step can be taken at which the two parallel CF edges are merged into one, CF1+2. 
Although they control different potential sources, being parallel, they possess  the same potential 
difference. The simplified graph is shown in Fig. 7c.  

Once the graph is constructed, the flow variables of the edges become part of a general circulation 
in the graph, originating in the flow sources, flowing through the edges to the reference vertex and 
then back to the sources.  
 

Figure 7. Graph Representation of a beam  
(a) An indeterminate beam. (b) The corresponding graph representation. (c) Simplification of the graph by merging the 

parallel CF edges. 
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The process of constructing a graph representation of a skeletal structure is  performed 
systematically, as is described in Algorithm 1: 

Algorithm 1: Constructing a graph representation of a structure 

1. Divide the structure to its primitive members.  

2. Set a direction for each structural member. 

3. Represent each structural member according to the graph appearing in Fig. 6, and 
each pin-jointed member (a rod) by a resistance edge. Connect all the edges 
through their end vertices according to the interconnections of the members in the 
structure, and combine all the reference vertices into one. 

4. Represent each kinematical constraint by a potential difference source whose tail is 
the vertex corresponding to the constrained joint and its head is the reference 
vertex. 

5. Represent each externally applied load by a flow source edge directed from the 
reference vertex to the vertex corresponding to the joint upon which the load is 
applied. 

6. Merge parallel dependent flow sources, and contract potential sources forcing a zero 
potential in all dimensions (like clamped supports). 

3. Applications 

In previous sections, the isomorphic graph representation for a structure was developed. The 
representation was constructed in a way to ensure that the mathematical behavior of the 
representation completely  reflects the physical behavior of the represented structure. Accordingly, 
possessing a representation of structure enables one to substitute any reasoning process over the 
structure by mathematical reasoning over the representation. The abilities arising as a consequence 
of this issue are discussed in this section.  

3.1. Structural Analysis through Graph Representations. 

One of the immediate applications of the graph representation of a skeletal structure is to structural 
analysis. Since the graph represents an engineering system isomorphically, the analysis can be 
performed directly upon the graph using known methods and algorithms that are embedded in the 
graph representation and mathematical interrelations with other representations.  

One of these methods is the Mixed-Variable Method (Balabanian and Bickart, 1969), which is 
formulated in the terminology of the graph representations in (Shai and Rubin, 2003; Ta`aseh and 
Shai, 2002). Upon application to a graph representation, the Mixed-Variable Method divides the 
edges of the graph into two groups EF and E∆ to form two auxiliary graphs – GF and G∆. From these 
graphs a straightforward procedure leads to a system of linear equations, whose unknowns are the 
flows in the chords of GF and the potential differences in the branches of G∆. The variables 
underlying the original graph representations are then obtained from these variables through simple 
matrix multiplications. Figure 8 shows an example frame system. The structure is loaded as shown, 
and we consider a problem where the forces in the members should be determined, as well as the 
displacements of joints b and c. The problem shown here is widely used in the literature as an  
example demonstrating various methods for analysis of indeterminate skeletal structures 
(Southwell, 1940; Carter and Kron, 1944; tBjørke, 1995). Figure 9 shows the solution of this 
problem obtained by applying the Mixed Variable Method to the graph representation of this 
frame. More details on derivation of the analysis equations presented in Figure 9 can be found in 
(Ta`aseh and Shai, 2002).   
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Figure 8. Example frame system to be analyzed.  
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Figure 9. Solving a structural graph representation by Mixed Variable Method  

(a) The  graph representation of the frame of Fig. 8. (b) The set of equations stemming from 
the Mixed Variable method in its vectorial form (c) The set of equations in the explicit form.         

(d) Given parameters. (e) The solution. 
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3.2. Applying Tellegen’s theorem to structures.  

In this section the well-known Tellegen's theorem will be applied to the RGR of a structure, and it 
will be shown that the result coincides with a known mechanical energy method. In (Shai, 2001c) 
the  application of Tellegen's theorem to trusses was introduced, while here, through the graph 
representation developed in this paper,  this theorem is extended to skeletal structures. 

Tellegen's theorem was originally related to electrical networks (Tellegen, 1952). Later it was 
extended to a general orthogonality principle between two isomorphic vector-networks (Andrews, 
1971). According to this extension, Tellegen's theorem can be stated using graph terminology as 
follows (Shai, 2001c): 

Tellegen's Theorem: Let G∆ and GF be isomorphic potential and flow graphs. Then: 

 ( ) 0F∆

1

)e(
=⋅∑

=
j

t
j

j
F∆

G
 (27) 

where e(G) is the number of edges in the graph, ∆∆ is the vectorial potential difference of the j-th 
edge in G∆, and FF is the vectorial flow of the corresponding edge in GF. 

As was shown in (Shai, 2001c), for truss graph representations, the expression in (27), when related 
to general structure graph representations can be decomposed as follows: 

 ( ) ( ) ( ) ( ) 0F∆F∆F∆F∆
G

=⋅∑+⋅∑+⋅∑=⋅∑ ∆∆∆∆

=

FFFF

1

)e(

i
t

i
i

P
t

P
P

∆
t

∆
∆

j
t

j
j

 (28) 

where subscript ∆ indicates upon potential difference source edges corresponding to constraints, 
subscript P upon the flow source edges corresponding to externally applied loads, and i indicates 
edges corresponding to the structural members. Superscripts ∆ and F , as before, indicate relation to 
G∆ or GF, respectively. In constrained degrees of freedom the displacement is zero, therefore:  

 0=∆
∆∆  (29) 

The degrees of freedom in which the support is free, are not constrained for potentials, but are free 
of forces, thus possess zero flow. Therefore, the first term in (28) becomes: 

 ( ) 0F∆ =⋅∑ ∆ F
∆

t
∆

∆
 (30) 

As for the flow sources representing loads, each such flow source edge is directed from the 
reference vertex to the vertex corresponding to the loaded joint. So its tail potential is always zero, 
while the head potential corresponds to the displacement of the loaded joint. Therefore, by (11):  

 ∆∆ −= PP Π∆  (31) 

substituting (29) and (30) in (31) results in: 

 ( ) ( ) FF
P

t
P

P
i

t
i

i
FΠF∆ ⋅∑=⋅∑ ∆∆  (32) 

At this stage, the Tellegen's theorem can be further adjusted for the structural graph representation 
developed in this paper. The left side of (32) is a summation over the structural member edges, 
while each member is represented by three edges: a resistance edge, a dependent potential source 
and a dependent flow source, as shown in Fig. 4. Hence, each term in the summation can be 
expanded into three, as follows: 

 ( ) ( ) ( ) ( ) FFFF
CF

t
CFCP

t
CPR

t
Ri

t
i F∆F∆F∆F∆ ⋅+⋅+⋅=⋅ ∆∆∆∆  (33) 
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Due to isomorphism between the potential and flow graphs upon which Tellegen's theorem is 
applied, it is suggested that the structural systems to which the graphs correspond are having the 
same topology. Moreover, for simplicity, the geometry of these systems is chosen to be identical.  

Therefore, the hybrid matrices H∆ and HF of each member in the system represented by the 
potential graph are equal to those of the corresponding member in the system represented by the 
flow graph, and are interrelated to each other by (25). Applying hybrid connections (23) and (26) to 
(33) gives: 

 ( ) ( ) ( ) ( ) FFFFF
CP

t
CFCP

t
CFR

t
Ri

t
i FH∆F∆HF∆F∆ ⋅⋅+⋅⋅+⋅=⋅ ∆∆∆∆∆  (34) 

And since HF = (-H∆)t, 

 ( ) ( ) ( ) ( ) ( ) ( ) FFFF
CP

tt
CFCP

tt
CFR

t
Ri

t
i FH∆FH∆F∆F∆ ⋅−⋅+⋅⋅+⋅=⋅ ∆∆∆∆∆∆  (35) 

The two right-most terms cancel each other, so: 

 ( ) ( ) FF
R

t
Ri

t
i F∆F∆ ⋅=⋅ ∆∆  (36) 

The latter result indicates that each member contributes to equation (32) only a product term 
dependent on its resistance edge. Using the resistance relation (16), (35) can be rewritten as: 

 ( ) ( ) ( ) ( ) ( ) ( ) FRFRFRFF
RR

t
RR

t
R

t
RR

t
RRR

t
Ri

t
i FRFFRFFFRF∆F∆ ⋅⋅=⋅⋅=⋅⋅=⋅=⋅ ∆∆∆∆∆  (37) 

Where the last transition employs the resistance matrix symmetry. Substituting (36) into (32) gives: 

 ( ) ( ) FFR
P

t
P

P
RR

t
R

R
FΠFRF ⋅∑=⋅⋅∑ ∆∆  (38) 

The last expression relates flows in both graphs to the potentials of the vertices upon which the 
external loads are applied. As in Shai (2001c), this expression can be used to deduce theorems and 
techniques that were developed in structural mechanics on the basis of energy considerations, such 
as unit-force method and Betti's law. 

For example, if a specific displacement in the structure is to be determined, the expression (38) can 
be further simplified by choosing the proper isomorphic potential and flow graphs, upon which 
Tellegen's theorem is applied. The potential graph, G∆ , is the derivative of the resistance graph that 
represents the structure in question, with an extra-edge connecting the reference vertex with the 
vertex whose displacement is to be determined (the flow in this extra-edge is set to zero to maintain 
the original flow balance). The flow graph, GF, is an isomorphic graph, in which all flow sources 
are set to zero, and a unit flow, P1, is set in the extra-edge. This way, the sum of products over the 
flow sources in the form (38) of Tellegen's theorem includes only the product associated with the 
extra-edge, whose flow equals to 1 in the relevant dimension. Therefore, (38) becomes: 

 ( ) FR
P1Π RR

t
R

R
FRF ⋅⋅∑= ∆∆  (39) 

One can notice that (39) coincides with the equation of the well-known unit-force method 
(Hibbeler, 1985). The application of the last equation is demonstrated here through an example 
problem, taken from (Hibbeler, 1985) p.247. In this problem, shown in Fig. 10a, the slope at point 
C of the beam is to be determined. The graphs G∆ and GF, constructed according to the description 
above, are shown in fig. 10b and 10c, respectively. 
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Figure 10. Application of Tellegen's theorem to a beam 
(a) A simply supported beam. (b) The original graph as a potential graph. (c) An isomorphic graph as a flow graph, with a 
unit flow source directed to the vertex whose potential is to be determined. (d) The explicit flow law by Eq. (27). (e) The 

original graph flow solution. (f) The isomorphic flow graph flow solution. (g) The potential of the vertex in question 
determined using Tellegen’s theorem. 

The spanning tree used to formulate the flow law is identical in both graphs due to isomorphism 
and is shown for G∆ in Fig. 10b. The flow law for the cutsets that disconnect the midway vertices 
A', B' and C', can be stated in general as follows: 
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Relating to all other T' cutsets shown in fig. 10b, and using (40) and the hybrid connection (26), the 
flow law can be formulated through the following cutset equation: 

 ( ) PPTRRT FQFHQ
rrrrr
⋅−=⋅+ '

F
'  (41) 

Applying (41) to the graphs in fig. 10b and 10c, with the hybrid relation matrices Hi
F according to 

(10), results in the explicit equation of fig. 10d. Substituting the appropriate source flows for the 
graphs of fig. 10b and 10c, yields the flow vector results of fig. 10e and 10f, respectively. 
Substituting these flow vectors in (39), and using the global resistance matrices of the members      
(McGuire and Gallagher, 1979), yields the final result, shown in fig. 10g. 

Eq. (39) can also be applied to a continuous graph representation of a structure, i.e. a graph that 
represents every infinitesimal segment in the structure as if it was a member of its own. This 
representation is useful when a simple structure subjected to distributed loads is to be analyzed.  

Using  the right side of (39) will have the following shape: 
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(42) 

Since each segment has infinitesimal length, dL, high order magnitudes can be eliminated from the 
internal resistance matrices, and the integration in (42) will then yield the infinitesimal form of 
(39), as follows: 

 dL
EI

ff
EI

ff
GJ

ff
EA

ff
Π

FAAFAAFAAFL∆L

P1 ⋅








 ⋅
+

⋅
+

⋅
+

⋅
= ∫

∆∆∆
∆

segments
structural z

zz

y

yyxxxx  (43) 

which is exactly the formulation known in the literature for the continuous unit-force method 
(Hibbeler, 1985). 

 

3.3. Deriving the conjugate structure theorems from the mathematical knowledge 
embedded in graph representations.  

Once a structure is represented by a graph representation, all the knowledge embedded in the 
representation and its relations to other representations become available and can be employed for 
dealing with the structure. As it was demonstrated in the previous section, this opens up new 
avenues of research and practical applications in structural research, since the knowledge related to 
both design and analysis can be imported from other engineering fields.  

Current section provides a brief review on an advanced research direction opened through this 
ability. The idea behind this research is the transformation of a beam or a frame into its dual 
engineering system through the duality relation between Graph representations. 

It is interesting to notice that the same principle has already been applied to establish a duality 
relation between determinate trusses and mechanisms (Shai, 2001a), which yielded several  
advancements in solution of diverse engineering problems (Shai, 2002).  This relation was 
established on the basis of the relation between two graph representations - Flow (FGR) and 
Potential (PGR) Graph Representations.   Fig 11 shows an example of a truss and its dual 
mechanism, together with their corresponding graph representations.  
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Figure 11.  (a) a truss, (b) corresponding graph representation and its dual graph 
representation and (c) the dual mechanism. 

 

This relation constitutes a powerful tool for translating knowledge between the two engineering 
fields, thus providing an engineer with an alternative way for dealing with the tasks he faces. It was 
shown in (Shai2003) that the duality relation can be employed for developing new methods for 
analysis and design mechanisms and trusses. 

Potential Graph Representation and the Flow Graph Representation that were used to establish this 
relation  are known to be components of the Resistance Graph Representation (Shai, 2001b) that 
has been used here to represent beams and frames. Consequently the duality relations of these 
representations can be employed for beams and frames as well, as is shown in the following 
paragraphs.  

Consider the fixed supported beam of fig. 12. The displacements in each point along the beam can 
be represented by a linear and angular potential graphs, LGy

∆ and AGz
∆, whose elements correspond 

to the infinitesimal segments of the beam, as shown in black in fig. 12b. Although the beam is 
composed of infinitely large number of segments and so is its PGR, only 4 segments are shown in 
the figure for clarity. 
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Figure 12. The dual FGR as an FGR of a dual beam 
(a) The original beam. (b) The PGR of the original beam (black) and its dual FGR (gray) superimposed. (c) The dual 

FGR as the flow graph of a dual beam. (d) The dual beam and its external load.  

 

For the potential graph representing the beam one can build a dual graph representation, which was 
proved to be a Flow Graph Representation, as is shown in Fig 12. One can notice that the obtained  
flow graph possesses topology typical to the topology of a flow graph representing some beam 
which is actually  the dual engineering system or in other words - the dual beam,.  
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The dual beam differs from the original one in two aspects: First, the dual beam is clamped at the 
end which was originally free, while its other end that was originally clamped is free. Second, the 
externally applied load on the dual beam, shown in fig. 12d, is a distributed load obtained during 
the construction process, in contrast to the original beam where the external force was applied at a 
single point  

It is interesting to notice that the dual beam is actually the same beam as the one pointed out by 
Otto C. Mohr in 1860, through his well-known conjugate beam theorem (Hibbeler, 1985). The fact 
that the dual beam resulted from  a determinate procedure over graph representations, indicates a 
possibility to expand the theorem to more complicated systems, such as frames and to reveal its 
additional aspects. 

3.4. The relation between mechanical structures and integrated systems 

As was explained in the introduction, the current paper is aimed on developing graph 
representations upon which to obtain a system view on structural analysis and not dedicated solely 
for developing another analysis method based on graph theory.  To meet this goal, a graph 
representation that enables attaining a  system perspective on structural analysis has been 
developed. As was mentioned in the introduction, the skeletal graph representation is similar to the 
graph representation of integrated system, a relation which opens many avenues of research.  

Skeletal structures are widely employed in advanced contemporary technologies such as MEMS, 
thus applying this representation gives rise to a method of treating this type of  engineering systems 
in a unified way without considering to which engineering domain specific system elements 
belong. 

In order to draw a comparison between the representations of the integrated and the beam systems, 
Fig. 13 provides examples of these systems and their corresponding graph representations. One can 
see that the system presented in Fig 13a comprises elements from statics, dynamics and electrical 
circuits interrelated by means of the control devices. In the corresponding resistance graph 
representation (Fig. 13b) these control devices are expressed through dependent source edges. As 
was  explained in details  throughout the paper and as can be seen from Fig 13d, same dependent 
source edges are used in the representation of the beam system.  
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Figure 13. Example integrated and beam systems and their corresponding graph 
representations. 

 

 

4. Conclusions and Further Research  

The paper has introduced a graph representation to attain a system education perspective on 
structures  and the knowledge embedded in it was adopted and applied to perform the analysis. Due 
to the generality of the graph representation, all the knowledge embedded in the representation and 
its relations to other representations become available and can be employed for dealing with the 
structures. Hence, this representation gives another insight in structural engineering education, 
since the knowledge related to both design and analysis  can be taught through the mathematical 
basis of the graph representations. The approach of teaching structural mechanics from a 
multidisciplinary system perspective has already been tested with high school students, and 
outstanding results were achieved (Shai, 2001b). 

Additional aspect of the approach is enabling the students to witness how the mathematical laws of 
graph theory are reflected in the laws underlying the physical behavior of structures. Two 
preliminary results of such derivations have been reported: The well-known Tellegen's theorem 
from electricity was applied to the Resistance Graph Representation of a structure, and it was 
shown that the result coincides with a well-known mechanical energy method – the unit-force 
method. In the same section, it was shown that through the duality relation between Graph 
Representations, the transformation of a beam into its dual engineering system results with a dual 
beam that is actually the same as the one pointed out by Otto C. Mohr in 1860, through his well-
known conjugate beam theorem (Hibbeler, 1985). The fact that the dual beam resulted after 
applying a determinate procedure to graph representations gives the students an insight upon the 
derivation of known theorems and methods from more general mathematical laws. 

The research work shown in the paper is expected to be applicable in many ways, including 
transferring engineering knowledge from other engineering fields into structural mechanics and 
vice versa. This indicates that the students will gain their understanding not only in structural 
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mechanics , but also in other engineering domains that are represented by the same graph 
representation.  

It should be emphasized that the work reported in this paper is a part of a more general research 
approach called Multidisciplinary Combinatorial Approach (MCA), summarizing the results of 
previous publications on applying graph theory to engineering into a general graph representation 
framework.   The same type of graph as the one employed in this paper, has been employed also in 
MEMS (Shai et. al.  2002), integrated systems (Shai and Rubin, 2003), robotics (Shai, 2002b), and 
other advanced topics of modern engineering.  
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